روش جداسازی عملگرها برای حل عددی معادلات دیفرانسیل با مشتقات جزیی سهموی

پایان نامه
چکیده

هدف از این پژوهش، بررسی سازگاری، پایداری و آنالیز همگرائی از یک روش جداسازی عملگر، یعنی روش جداسازی تکراری عملگر، با استفاده از شیوه های مختلف برای حل معادلات دیفرانسیل جزئی سهموی می باشد. ایده این روش جداسازی مسائل پیچیده و تبدیل آن به مسائل ساده تراست بنابراین، هر زیر مساله با طرحهای تکراری ترکیب شده و با انتگرالگیریهای مناسب حل می شودآنالیزها بستگی به نوع عملگرهای مسائل دارند

۱۵ صفحه ی اول

برای دانلود 15 صفحه اول باید عضویت طلایی داشته باشید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

روش حجم محدود برای حل معادلات دیفرانسیل جزیی سهموی

هدف از انجام عمل گسسته سازی تبدیل یک یا چند معادله دیفرانسیل با مشتقات جزیی به یک دستگاه معادلات جبری است . حل این دستگاه ها باعث تولید یک مجموعه از مقادیری می شود که متناظر با جواب معادلات دیفرانسیل جزیی در برخی از موقعیت های مکانی یا زمانی است . فرآیندهای گسسته سازی به دو گام گسسته سازی دامنه جواب و گسسته سازی معادله تقسیم می شوند . گسسته -سازی دامنه جواب، یک توصیف عددی از دامنه محاسبه ای را ...

15 صفحه اول

روش های جهت متناوب و تفاضلات متناهی فشرده برای حل معادلات دیفرانسیل با مشتقات جزیی سهموی

در این تحقیق با توجه به پر هزینه بودن حل معادلات دیفرانسیل با مشتقات جزیی سهموی چند بعدی با استفاده از روش های مستقیم، کارائی روش های جهت متناوب به همراه تقریب های تفاضلات متناهی فشرده برای حل عددی اینگونه معادلات بررسی خواهد شد. همچنین به مقایسه ی کارایی این روش ها نسبت به روش های عددی دیگر به کار رفته برای حل این معادلات خواهیم پرداخت. در ضمن پایداری این روش ها نیز بررسی خواهد شد. باید اشاره ...

روش های عددی انتشار برای حل عددی معادلات دیفرانسیل با مشتقات جزیی هذلولوی

معادلات دیفرانسیل با مشتقات جزیی از نوع هذلولوی? ، انواع زیادی از پدیده های فیزیکی را با استفاده از رفتار موج توصیف می کنند. به لحاظ آن که نمی توان جواب دقیق اینگونه معادلات را بدست آورد، تلاش می کنیم تا تقریب جواب مسائل انتشار موج را با کمک روش های عددی بیابیم. در این پایان نامه، به روش های عددی با درجه دقت بالا، برای حل معادلات دیفرانسیل با مشتقات جزیی هذلولوی در چارچوب روش خطوط? ، می پردازیم...

یک روش عملیاتی موجک برای حل عددی معادلات دیفرانسیل با مشتقات جزیی کسری

حساب کسری، در سالهای اخیر زمینه مطالعات بسیاری از ریاضیدانان قرار گرفته است. مشتق و انتگرال مرتبه کسری کاربردهای فراوانی در فیزیک و مکانیک، از جمله فیزیک پلاسما، مکانیک کوانتومی و دینامیک آشفتگی پیدا کرده اند. همچنین معادلات دیفرانسیل با مشتقات جزیی که شامل عملگرهای کسری باشند، کاربردهای زیادی در علوم مهندسی دارند. با این حال روشهای تحلیلی که برای حل این معادلات وجود دارند اغلب پیچیده و دشوار ه...

15 صفحه اول

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


نوع سند: پایان نامه

وزارت علوم، تحقیقات و فناوری - دانشگاه کاشان - دانشکده ریاضی

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023